EPIVINFF

Contract no. 101057548
EPIVINF
Epigenetic regulation of host factors in viral infections

D2.1 List of epigenetic markers predictive of viral load
(HIV) and disease course (COVID)

ACTION: Research & Innovation Action (RIA)
CALL: HORIZON-HLTH-2021-DISEASE-04
TOPIC: HORIZON-HLTH-2021-DISEASE-04-07

Completion Date

of Deliverable 07/08/2025

Due Date of Deliverable 31/08/2025

Deliverable leading partner IRSICAIXA Author IRSICAIXA

Epigenetic signatures in HIV and SARS-
WP N¢ 2 WP Title CoV-2 infection and impact on virus-
specific host immunity and virus control

Project starting date 01/09/2022 Project Duration 60 months

PU | Public v

SEN | Sensitive

Dissemina
tion Level

Copyright
© Copyright IRSICAIXA

This document has been produced within the scope of the EPIVINF Project and is confidential to the Project’s participants. The
utilization and release of this document is subject to the conditions of the contract within the Horizon Europe Programme, contract
no.101057548. The text represents the authors' views and does not necessarily represent a position of the Commission which will not
be liable for the use made of such information.

This project has received funding from the European Union’s Horizon Europe Research and Innovation
Programme under Grant Agreement N2 101057548




TABLE OF CONTENTS

1.
2.

INTRODUCTION / EXECUTIVE SUIMIMARY .......ccoirrereeerreeesssssnneeeesesssssssssseessessssssssssssssssssssssssssessessssssssssssssesssssannsaes 3
CONTENT .ccuuiiiteiiiieeeieitensieitensisisssssstsssssstssssesssnsssssssssssssnssssssnssssssnssssssnssssssnssssssnssssssnssssssnssssssnsssssansssssnnsssssnnsssssnne 4
2.1 [ Y PP PR PPPPTIINN 4
2.1.1  HIV STUDY COHORT ..veeeeeeeeetesteeste et s te s te st e st e sst e st et aataaataas et e esaestaassasatasneaanessssassensaansanssesssessanasennses 4
D B Y Y 2 0l 1AV o 1 PRSPPI 6
2.1.3  DNA-METHYLATION IN HIV c...oooveeteeeeeee et stte st et ettt taettaette st e teesasatasasasnsasssaassessenssansanssasssesssessesssennses 8
2.1.4 Differentially expressed genes under epigenetic requlation GENES .............cccceeeecveeeeeciveeeesiieeeesiireeesvesesennns 9
2.1.5  FURTHER STEPS_VALIDATION STUDIES .......uuu e s 11
2.2 SARS-COV -2 . ittt ee e e e e e ettt e e e e e e et et eeeee et et et eettt————aeetetat———aeetttatateetttanaaeeeerrannnn 12
2.2.1  SARS-COV2 STUDY COHORT ..ottt ettt e e ettt et e e e e ettt te e e s e e ettt sae e e e e e setasaeeaaasasssnnnessasesnsnns 12
2.2.1  RNA-SEQ IN SARS-COV2 ....ooueeeeteeeeeeeee et esitt ettt sttt e site et e st e sttt e stta st e s ssasstassseaebsaesstasstessnsenstasseaenses 14
2.2.2  DNA-METHYLATION IN SARS-COV2 ...ooeeeeeeeeeeeeeeeeettaettes e taete s ta st assa e st e s e tasssaasaassassssesasasasasasssanseenss 16
2.2.1  FURTHER STEPS GNA VALIDATION STUDIES........oecvveeeeeeeeeeeteesteesteestestastastassaassaesesssasssassassssesssssssssssnsnnns 17

EPIVINF
Page 2



EPIVINF

1. INTRODUCTION / EXECUTIVE SUMMARY

Untreated HIV infection leads to immune decline and manifestation of opportunistic infections, including cancers
linked to viruses like Epstein-Barr Virus (EBV). Even HIV patients treated with antiretroviral therpay may
experience lasting immune impairments and neurodegeneration, similar to post-acute effects seen in SARS-CoV-
2 infection. Both viruses can cause early immune disruption and may leave long-term impacts through stable
epigenetic changes, particularly DNA methylation, that impair immune control over co-pathogens, such as EBV.

In WP2, EPIVINF aims to identify and compare epigenetic changes in immune cells caused by HIV and SARS-CoV-
2 infections, and how these relate to disease severity and immune dysfunction. We uses genome-wide
methylation analysis, transcriptomics and 10X sequencing, and proteomics to explore how these changes affect
immune response to these as well as co-pathogens. The goal is to uncover shared epigenetic signatures that can
be targeted by personalized therapies, including potential “epidrugs,” which may benefit a range of immune-
related disorders.

Our studies in acute HIV and SARS-CoV-2 infection have identified several epigenetically dysregulated factors and
pathways, and have revealed potentially drugable targets, among them host factors involved in the overall
epigenetic cascade. These analysis may enable the use of some 'epidrugs' for these infections and a broader
range of disorders, beyond strategies that focus solely on highly disease-specific markers.

Page 3



EPIVINF

2. CONTENT

Our studies in acute HIV and SARS-CoV-2 infection have identified multiple epigenetically dysregulated host
factors and pathways, indicating significant and potentially long-lasting impacts on immune regulation. These
changes, particularly in DNA methylation patterns, suggest a disruption of gene expression programs essential
for effective antiviral responses and immune surveillance. Importantly, we have identified several candidate
targets among host factors involved in the broader epigenetic machinery (mainly in HIV but also emerging from
the studies in SARS-COV-2 infection), providing a rationale for the use of "epidrug"—therapies that modulate
epigenetic states—as a novel strategy with broad applicability beyond highly disease-specific interventions.

Here, we detail the patient cohorts used for the study of DNA methylation changes in the context of HIV and
SARS-CoV-2 infection and the data obtained from these analyses. The cohorts include longitudinal samples from
individuals at early stages of infection, as well as with varying degrees of disease severity (SARS-COV-2), to capture
a wide range of epigenetic alterations.

We also outline the methodology employed for identifying relevant pathways, which involves genome-wide DNA
methylation profiling of peripheral blood mononuclear cell (PBMC) subsets, cell transcriptomics and
bioinformatic analyses.

In addition, here we update the current progress and future directions for validation analysis and next steps,
including work focussing on validating the identified targets through functional assays and cross-cohort
comparisons.

2.1 HIV

2.1.1.1 LONGITUDINAL OMICS COHORT FOR EVALUATING HIV-ASSOCIATED EPIGENETIC CHANGES.

Taking advantage of the extensive HIV cohort at IRSI Partner, from the CHECK-EAR cohort in Barcelona with 3-
monthly sampling intervals, we have currently 18 individuals with samples stored from before and post HIV
infection. For a comprehensive multi-omic study, we have included 5 individuals on whom pre-HIV infection
samples (Timepoint 1, T1), post-acute (Timepoint 2, T2) and after one year on ART treatment (Timepoint 3, T3)
samples were stored. Clinical parameters and experimental design are shown in Table 1 and Figure 1.

Table 1. Clinical data of HIV participants

LIA Immunblot bands (NOT

PATIENT ID Estimated HIV st HIV diagnose  Inici ART Date Rapid 4th Test CLIA (Confirmatory) wa) pvL SAMPLE ID VL at sample CD4 at sample
1 2013070100 2/7/13 N.A WA
1 24/9/14 21/10/14 29/10/14 21/10/14 Weak Inconclusive 746989 2014100276 29/10/14 177894 244
1 29/10/14 Pos gpdl,p24 177894 2016110200 28/11/16 <40 689
2 2012000172 %/10/2012 NA A
2 30/10/13 11/2/14 25/7/14 11/2/14 Pos 2014060109 13/6/14 154816 1207
2 14/2/14 Pos £p120, gpal, p31, p2d T4BS3 2015110168 13/11/15 <40 1766
E] 2010070354 20/7/10 NA MA
3 24/10/10 21/13/10 42111 23/12/10 Pos Pog 2011010118 14/1/11 130615 403
3 29/12/10 Pos gp120,gpd1, pid SE000 2012100043 2/10/12 <40 an
a 2011060217 15/6/11 NA NA
4 1/10/11 10/1/12 1/2(13 10/1/12 Pos Pos [vla EHR) 2012020185 13/2/12 420,000 556
q 13/1/12 £p120g41, p31,p2,p17 420,000 2014030416 25/3/14 <40 699
5 2010060044 1/6/10 MN.A WA
5 17/1/11 10/2/11 22/2/11 10-11/2/2011 Pos Pos Ep41 {undeterm] 2.600.000 2011020164 11/2/11 2.600.000 422
5 2011020420 25/2/11 2.600.000 an
s 2012060335 27/8/12 <40 551
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Figure 1. Study and experimental design

2.1.1.2 CELL SORTING

After thawing PBMCs, cells were stained for surface markers to identify T cells (CD3*CD4* and CD3*CD8*), B cells
(CD3°CD19%), and non-T/B cells (CD3°CD197) for subsequent sorting using a FACS Aria sorter (Figure 1). The
median cell yields obtained after sorting across the three timepoints and five participants were as follows: 6.75
x 10° CD4* T cells, 1.13 x 108 CD8* T cells, 2.34 x 10° B cells, and 7.12 x 10° non-T/B cells.

2.1.1.3 RNA/DNA EXTRACTIONS

From dry cell pellets of the sorted populations, simultaneous RNA and DNA extractions were performed using
RNA/DNA purification kit (Norgene Biotek©, Canada), for subsequent DNAmethylation and RNAseq analysis.

RNA concentration was measured using Qubit RNA HS Assay, and RNA quality and fragment distribution were
assessed using the Fragment Analyzer system with the High Sensitivity RNA 15 nt reagent kit, suitable for
detecting small or low-abundance RNA species.

DNA concentration was measured using the Quant-iT High Sensitivity dsDNA Assay Kit (Thermo Fisher Scientific)
on a Qubit fluorometer. DNA integrity was assessed using the Genomic DNA 50 kb Kit (DNF-467) on the Fragment
Analyzer (Agilent), and DNA Integrity Numbers (DINs) were calculated automatically.

The quantity and quality of nucleic acids obtained from each sorted cell population were as follows. For DNA,
median yields and integrity (DIN) were: CD4* T cells — 1.0 ug (DIN: 8.7), CD8* T cells — 1.1 ug (DIN: 9.1), B cells —
0.3 pg (DIN: 8.45), and non-T/B cells —0.75 pg (DIN: 8.55). For RNA, median yields and integrity (RIN) were: CD4*
T cells —0.44 pg (RIN: 9.6), CD8* T cells — 0.7 pg (RIN: 9.8), B cells —0.16 ug (RIN: 9.2), and non-T/B cells — 0.4 pg
(RIN: 5.7).

These values indicate that the isolation and sorting of immune cell subsets yielded sufficient quantities of high-
quality DNA and RNA for downstream epigenomic and transcriptomic analyses. CD4* and CD8* T cells consistently
provided the highest nucleic acid yields with excellent integrity scores (DIN and RIN > 8), ensuring robust data
generation for both methylation and gene expression studies. While B cells and non-T/B cells yielded lower
amounts of nucleic acids, their quality remained within acceptable ranges, except for RNA from non-T/B cells,
which showed slightly reduced integrity (median RIN: 5.7), potentially reflecting biological heterogeneity or
increased RNA degradation susceptibility in this cell population specially after thawing and sorting cryopreserved
cells. All in all, these results confirm the suitability of the sorted cell populations for integrative multi-omics
analyses, mainly in adaptive immune cells, and support the reliability of the data derived from each subset.
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Stranded total RNA sequencing . For each sample, a range between of 50-200 ng of total RNA was used as input
for library preparation using the lllumina TruSeq Stranded Total RNA Library Prep Kit with Ribo-Zero Gold for
ribosomal RNA depletion. Libraries were prepared according to the manufacturer’s protocol, maintaining strand
specificity. Paired-end sequencing (2 x 150 bp) was carried out on the Illumina NovaSeq 6000 platform (S4 flow
cell), aiming for a sequencing depth of ~30 million reads per sample.

2.1.2.1 RESULTS RNA-SEQ

After normalization and quality control, MDS (multidimensional scaling) plots revealed clear differences among
cellular fractions. As expected, CD4* and CD8* T cells clustered more closely together (both being T cell subsets),
whereas B cells and non-T/B cell populations appeared more distinct and segregated (Figure 2).
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Figure 2. Multidimensional scaling (MD5) plots illustrating RNA-seq variability across samples. Samples are
color-coded according to: A) cell type (CD4* T cells, CD8* T cells, B cells, and double-negative non-T/non-B
cells [DN]) and time point (pre-infection, T1; post-infection, T2; and post-ART, T3), and B) time paint and per
patient.

Subsequent analysis using limma-voom pipeline was conducted. Pairwise comparisons were performed between
sequential timepoints (T2 vs. T1, T3 vs. T2) and the overall comparison (T3 vs. T1) within each sorted cellular
fraction (CD4* T cells, CD8* T cells, B cells, and non-T/B cells; Figure 3). Genes with low counts across all samples
were filtered prior to analysis. Differentially expressed genes (DEGs) were identified using an empirical Bayes
moderated t-test, and significance was defined as FDR < 0.2 with nominal p < 0.05 (Benjamini-Hochberg
correction). Overall, a substantial number of genes were upregulated following infection (T1), with expression
levels contracting after ART initiation, particularly in CD8* T cells and B cells (Figure 3). Interestingly, although
CD4* T cells displayed the largest fold changes in the T2 vs. T1 comparison, they exhibited fewer DEGs overall,
suggesting a more targeted transcriptional response.
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Figure 3. Volcano plots showing differential gene expression in CD4* T cells {upper left), CO8* T cells
{upper right), B cells (lower left), and non-T/-B cells (lower right) for T2 vs T1 and T3 vs T2 comparisans.,
Differentially expressed genes (DEGs) were defined as p < 0.05. Gane upregulation was most
pronounced after infection (T2 vs T1) and decreased following ART (T3 vs T2), particularly in CD8* T cells
and B cells.

Furthermore, CD4* T cells showed the least restoration of gene expression profiles after ART initiation post-
infection. Even after one year of virologic suppression under ART, many dysregulated pathways in CD4* T cells
remained uncorrected, suggesting persistent immune dysregulation in this compartment.

Then, Gene Set Enrichment Analysis (GSEA) was performed to identify dysregulated biological processes and
pathways following infection, using Gene Ontology (GO) terms and the KEGG and Reactome databases. The
analysis revealed that changes in CD4* T cells were enriched for pathways associated with viral response, viral
life cycle, interferon signalling, and Toll-like receptor signalling. CD8* T cells showed enrichment for cell cycle and
interferon-related pathways, while B cells were enriched for pathways related to B cell-mediated immunity and
immunoglobulin production (Figure 4), all in all reflecting a strong adaptive immune reactivity to acute HIV
infection.
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Flgure 4, Gene Set Enrichment Analysis [GS5EA] of dysregulated blological processes and pathways following
Infection. Shown are the Top 10 upregulated pathways for the T2 vs T1 cormparison (top panels) and the Top 10
downregulated pathways (bottom panels), assessed using Gene Ontology (GO) In CO4* T cells {left), COE* T cells
{middle], and B cells (right). In the dot plots, the x-axis indicates the gene ratlo for each GO category (y-axis), the
daot size reflects the number of genes per pathway, and the dot color represents the adjusted p-value.

Our findings reveal cell type—specific transcriptional responses to infection and upon ART initiation. While CD8*
T cells and B cells partially normalized after viral suppression, CD4* T cells remained transcriptionally
dysregulated. These results suggest that incomplete restoration of CD4* T cell transcriptional profiles underlies
persistent immune dysfunction despite virologically effective and fully suppressive ART.

Whole-genome enzymatic methyl-sequencing (WG-EM-seq) was performed on genomic DNA isolated from bulk-
sorted cells using the NEBNext® Enzymatic Methyl-seq Kit (New England Biolabs), following the manufacturer's
protocol. Briefly, approximately 50—-200 ng of high-quality genomic DNA was enzymatically fragmented to ~300
bp, end-repaired, A-tailed, and ligated to methylated Illumina-compatible adapters. Unmethylated cytosines
were enzymatically converted using TET2 and APOBEC enzymes, preserving methylated cytosines. After PCR
amplification, libraries were quantified and quality-checked. Paired-end sequencing (2 x 150 bp) was performed
on the lllumina NovaSeq 6000 platform (54 flow cell), targeting ~99 Gb per sample.

2.1.3.1 RESULTS WG-EM-sEQ

After normalization and quality control, differential methylation analysis was performed to identify Differentially
Methylated Regions (DMRs) across timepoints (T2 vs T1, T3 vs T2, and T3 vs T1) within each cellular fraction,
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following the same comparative design used for the RNA-seq analysis. As shown in Figure 5, the frequency of
DMRs across the different cell populations was relatively low, with only a limited number of regions showing
significant alterations in hypomethylation or hypermethylation across time points (DMR defined as B-value
difference < —-0.2 or > 0.2, with p < 0.05).

C0q T cells {08 T eells & celis

COd T oelis COF T celis 8 cells

NEIVEE |

Figure 5. Distribution of Differentially Methylated Regions (DMAs) aoross cell types. Top
paneks show methylation changes post-infection [T2 ve T1) in CD4* T cells {left], CO&* T cells
{middle], and B celks [right), while battom panels show changes post-treatment (T3 wi T3]
Histograms represent the frequency of sgnificative regions [p-value < 0U05] and datted red
line indicates the hypomethylation aor hypermethylation DMR showing a B-wvalue difference <
=02 or=0.2].

Interestingly, while the CD8* T cell fraction displayed several genes with an inverse relationship between
methylation status and gene expression—suggesting potential epigenetic regulatory effects at specific loci—in
the B cell population, we detected a distinct shift in DNA methylation dynamics, characterized by gene-associated
hypomethylation following infection and subsequent hypermethylation upon ART treatment. This opposing
methylation pattern suggests a more robust and coordinated epigenetic response to infection and therapeutic
intervention in CD8 T and B cells compared to the other cell types.

2.1.4 DIFFERENTIALLY EXPRESSED GENES UNDER EPIGENETIC REGULATION GENES

To explore the relationship between methylation changes and gene expression, we integrated RNAseq and WG-
EM-seq datasets through correlation analysis. Basically, for each cell type and comparison, DMRs were mapped
to proximal genes, linking epigenetic modifications to potential regulatory targets. Only those genes that were
DEGs with an associated DMR were consider for correlation analyses performed between the level of the
methylation change (AB-values) and gene expression change (log, fold change) (Figure 6).
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Across the integrated analysis of DNA methylation and gene expression, CD8* T cells exhibited the highest
number of differentially expressed genes (DEGs) under apparent epigenetic regulation, as evidenced by a strong
inverse correlation between promoter or proximal to the specific methylation sites close to the promoter and
transcriptional activity. Specifically, genes showing hypomethylation were frequently upregulated, while
hypermethylated regions were associated with gene downregulation, suggesting a dominant repressive role of
DNA methylation in shaping the transcriptional response of CD8* T cells to HIV infection and subsequent ART. In
contrast, CD4* T cells and B cells displayed fewer DEGs with significant methylation-expression correlations,
indicating more limited epigenetic control over their transcriptional dynamics at this level.

Moreover, this study identifies key dysregulated genes whose expression changes are tightly linked to DNA
methylation alterations in their promoter and flanking regions, underscoring the role of epigenetic regulation in
modulating gene activity. Figure 6 illustrates these findings through heatmaps that integrate per-patient gene
expression (RNA-seq) and DNA methylation (AB) data, highlighting significant methylation—expression
correlations in promoter and 1-5 kb flanking regions. The unsupervised clustering of samples further reveals
distinct epigenetic and transcriptional patterns over multiple time points (T1, T2, T3), providing insights into the
dynamic regulatory landscape. Together, these results confirm our hypothesis that methylation changes upon
HIV infection influence gene dysregulation inimmune cells, offering potential biomarkers and therapeutic targets
for further investigation.
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Integrating DNA methylation and transcriptomic data poses significant computational challenges, especially in
pilot studies like this and clinical cohorts with limited sample sizes. Traditionally, differential methylation analyses
that we have applied here, often require large statistical power to account for multiple testing across numerous
CpG sites, which can limit the detection of meaningful signals. Aside from this approach, Deliverable 6.1 detailes
our developed framework overcoming these challenges by leveraging a targeted Regulatory Region Set
Enrichment Analysis combined with a robust Multi-Modal Data Integration Strategy. This approach enhances the
identification of biologically relevant methylation changes correlated with gene expression alterations by
focusing on functionally relevant genomic regions and integrating complementary data types. Overall, our
analysis methodology provides a scalable and sensitive framework for epigenetic-transcriptomic integration,
paving the way for improved biomarker discovery and mechanistic insights in clinical research settings.

2.1.5 FURTHER STEPS_VALIDATION STUDIES

To ensure the robustness and clinical relevance of our findings, we have planned a multi-tiered validation strategy
that combines independent cohort testing with orthogonal experimental approaches.

2.1.5.1 INTEGRATION OF 10X ATAC-SEQ DATA

Ongoing analyses focus on integrating 10x Genomics ATAC-seq data to map chromatin accessibility profiles in the
context of the identified methylation—expression correlations in same participants, timepoints and blood
collection sample. This will enable the characterization of regulatory elements associated with our lead candidate
genes and the identification of potential enhancer—promoter interactions driving dysregulation.

Page 11



EPIVINF

2.1.5.2 VALIDATION IN INDEPENDENT COHORTS

For external validation, we will analyse two independent and unrelated cohorts (the SABES and Merlin Studies
Lama et al.,, 2018; Lama et al., 2020) and the Peru High-Risk Cohort at IrsiCaixa) which represent a clinically
enriched populations for testing candidate biomarkers. Lead genes identified from our integrative framework
(Figure 7 and D6.1) will undergo experimental validation using pyrosequencing, enabling precise quantification
of methylation levels at selected CpG sites. Current efforts focus on finalizing the list of top candidates for
validation, after which we will perform methylation screening across both cohorts and evaluate the concordance
with gene expression and ATAC-seq chromatin accessibility profiles. Together, these validation studies will
confirm the reproducibility of our findings and strengthen the translational potential of our multi-modal
epigenomic framework.

2.2 SARS-COV-2

2.2.1.1 COHORT FOR LONGITUDINAL EVALUATION OF SARS-COV-2 IMPACT ON EPIGENETICALLY REGULATED
FACTOR

A pilot longitudinal study was conducted in five age- and gender-matched participants to evaluate the impact of
acute SARS-CoV-2 infection on host epigenetics. Participants and samples were sourced from Partner IRSI’s
healthcare worker cohort, originally established before 2019 and continuously followed during the COVID-19
pandemic as part of the KING cohort extension. This cohort provides precious pre-/post-infection samples, which
are increasingly rare due to the rapid evolution of the pandemic, the emergence of viral variants, and the
widespread impact of vaccination. Samples were collected at two time points: pre-2020 (pre-infection timepoint,
T1) and one-month post-symptom onset (post-infection timepoint, T2). All cases corresponded to mild COVID-
19 from the first wave of the pandemic, ensuring analysis in a context free from the confounding effects of
vaccination or the pathophysiologcal diversity seen with infection by different strains. The data highlight the
unigue value of early native samples and demonstrates the feasibility of longitudinal multi-omics integration to
capture epigenetic alterations associated with SARS-CoV-2 infection (Table 2 and Figure 8).

Table 2. Clinical data of SARS-COV-2 participants

Irsi_Name  Pre-Infection Post-Infection Age Gender desivi Tocilizumab = Other antiviral Cortici i Hydraxychle iin ibioti i Interferon B
Mild1 ¥ ¥ 52 Male N N N N N N N N
Mild2 ¥ ¥ 39 Female N N N N N N N N
Mild3 ¥ ¥ 53 Female N N N N N N N N
Mild4 ¥ ¥ 45 Male N N N N N N N N
Milds ¥ ¥ 40 Male N N N N N N N N
Mildé n ¥ BB Female N N N N N N N N
Mild? n ¥ 48 Male N N N N N N N N
Mild8 n ¥ 55 Female N N N N N N N N
Milds n ¥ 55 Female Y N N N Y ¥ N N

Severe2 n ¥ 56 Male ¥ N N N Y Y ¥ N

Severed n ¥ 29 Male N N N ¥ ¥ Y Y N

Severed n ¥ B4 Male ¥ N Y N Y Y N ¥

Severel n ¥ 62 Male ¥ N N N ¥ ¥ N N
Severed n ¥ 73 Male N N N N N N N N

Severell n ¥ 76 Male ¥ ¥ Y N ¥ ¥ ¥ ¥

Severel2 n ¥ 62 Male ¥ N N Y N N ¥ N

Severel3 n ¥ 59 Male ¥ N Y Y ¥ ¥ ¥ N

Severeld n ¥ a7 Male Y ¥ N Y N N Y N

Severel5 n ¥ 44 Male ¥ N N Y N N ¥ N

Severel6 n ¥ 70 Male ¥ N N N ¥ ¥ ¥ N

- Page 12
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Figure 8. Study and experimental design

2.2.1.2 COHORT FOR CROSS-SECTIONAL OMICS ANALYSIS OF EPIGENETIC REGULATION IN COVID-19 SEVERITY

For the cross-sectional analysis of epigenetic regulation in COVID-19 severity, the initial group of five participants
with mild disease course described above was expanded to include a total of 9 mild cases (MILD, 5 females and
4 males), which were compared with 11 severe cases (SEVERE, all male) (Table 2 and Figure 8). An inherent
limitation of this study, reflecting the early pandemic context, is that all severe cases were male and slightly older.
Although no statistically significant age differences were found between groups (MILD median age 52 years vs
SEVERE median age 62 years, p-value=0.09 Mann Whitney), this demographic imbalance is important to consider
when interpreting the results. This comparison provides valuable insights into the epigenetic distinctions
associated with COVID-19 severity, while also highlighting challenges related to cohort composition during the
initial pandemic wave. These learnigns also influenced the further cohort compositions at the two other clinical
sites with Partner SAAR and OSR.

2.2.1.3 SAMPLE SOURCE AND DNA/RNA EXTRACTION

From available stored 2 milion dry-pellet and cryopreserve PBMCs, simultaneous RNA and DNA extractions were
performed using RNA/DNA purification kit (Norgene Biotek©, Canada) for further DNA-methylation and RNAseq
analysis.

RNA concentration, quality, and integrity were assessed using the Agilent BioAnalyzer RNA 6000 Nano kit. This
assay provides RNA quantification and evaluates fragment distribution, including the 18S and 28S rRNA peaks,
generating a RNA Integrity Number (RIN) suitable for standard RNA samples with moderate to high abundance.

DNA concentration was measured using the Qubit dsDNA Broad Range (BR) Assay Kit (Thermo Fisher Scientific)
on a Qubit fluorometer. DNA integrity was evaluated by agarose gel electrophoresis and confirmed by gPCR
amplification of human GAPDH and AMLX/Y targets.

Bulk PBMC samples provided sufficient quantities of high-quality DNA and RNA suitable for downstream
epigenomic and transcriptomic applications. Overall, nucleic acids extracted from these samples displayed robust
integrity, supporting reliable data generation for both methylation and gene expression studies. While some
variability in RNA quality was observed, the overall integrity remained within acceptable ranges for multi-omics
workflows. Collectively, these findings confirm that bulk PBMCs (cryopreserved or dry-pellet) are appropriate for
integrative analyses and ensure the generation of reproducible and biologically meaningful data.
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Stranded total RNA sequencing was performed on high-quality total RNA extracted from cryopreserved PBMCs
and dry pellet PBMCs. RNA-Seq libraries were prepared using the KAPA Stranded mRNA-Seq lllumina® Platforms
Kit (Roche), starting from 500 ng of total RNA. The poly-A RNA fraction was enriched by oligo-dT magnetic bead
selection, followed by fragmentation of the mRNA. Strand specificity was maintained by performing second
strand synthesis in the presence of dUTP instead of dTTP, ensuring strand-specific cDNA synthesis. The resulting
blunt-ended double-stranded cDNA was adenylated at the 3' ends and ligated with lllumina-compatible adaptors
containing unique dual indexes (UDIs) and unique molecular identifiers (UMIs) from Integrated DNA
Technologies. The ligation products were amplified by PCR with 15 cycles to enrich the library. Libraries were
sequenced on the lllumina NovaSeq 6000 platform using paired-end 2 x 50 bp reads, achieving a sequencing
depth of over 30 million paired-end reads per sample.

RNA-seq data were processed and analyzed using the edgeR and limma R packages. Raw gene count matrices
were first filtered to retain only genes with sufficient expression (total counts > 500 across all samples) and
normalized using the trimmed mean of M-values (TMM) method implemented in edgeR to account for library
size differences. Exploratory data analysis, including multidimensional scaling (MDS) plots, was performed with
ggplot2 and ggrepel to visualize sample clustering by biological and technical covariates such as batch, sex, and
experimental group. A linear modeling framework was implemented using limma-voom, with duplicate
correlation applied to account for repeated measures from the same individual. The design matrix included group
and batch effects, and contrast matrices were constructed to test specific pairwise comparisons of interest (e.g.,
Mild_post vs. Mild_pre and Severe vs. Mild). Differential expression was assessed using moderated t-statistics
with empirical Bayes shrinkage, and genes were ranked by adjusted p-values to identify significant expression
changes. Normalized expression values and full differential expression results for each contrast were exported
for downstream visualization and functional enrichment analyses.

2.2.1.1 RESULTS RNA-SEQ

After normalization and quality control, multidimensional scaling (MDS) plots revealed clear differences between
dry pellet and cryopreserved PBMC samples, calling for the inclusion of this variable as a covariate alongside sex
(Figure 9). Based on these identified variables, differential expression analyses were performed through pairwise
comparisons, specifically POST vs. PRE infection within the Mild group and for SEVERE vs. MILD disease
manifestation. Volcano plots were generated to visualize the transcriptional profiles, and differentially expressed
genes (DEGs) were defined as those meeting p < 0.05 and FDR < 0.2 (Figure 9). These analyses demonstrated
pronounced transcriptional changes in both comparisons, with the most substantial fold changes observed when
comparing severe cases to the group with milder symptoms, highlighting the enhanced transcriptional
dysregulation associated with severe COVID-19.
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Gene Set Enrichment Analysis (GSEA) was performed to uncover significantly dysregulated biological pathways
and processes following SARS-CoV-2 infection, using Gene Ontology (GO) annotations alongside curated pathway
databases such as KEGG and Reactome. Differentially expressed genes (DEGs) comparing pre- and post-infection
samples revealed significant enrichment in pathways central to cell cycle regulation, mitotic processes, cilium
assembly, SUMOylation of DNA replication proteins, and viral mRNA translation (Figure 10 Left). These results
indicate that SARS-CoV-2 infection disrupts fundamental cellular mechanisms responsible for cell division and
genome integrity, while also hijacking host translational machinery to facilitate viral replication. The involvement
of cilium assembly pathways may reflect viral impact on cellular structures critical for respiratory epithelial
function and host defence.

When comparing Severe versus Mild COVID-19 cases, distinct enrichment patterns emerged in immune-related
and signalling pathways, including CD22-mediated B cell receptor signalling, classical complement activation
(notably through C4 and C2 activators), initial complement triggering, CDC20 regulation, and Notch signalling
pathways regulated by RUNX3. The heightened activation of complement pathways and immune receptor
signalling in severe cases suggests an exacerbated inflammatory and immune response that may contribute to
immunopathology. Additionally, pathways linked to neuronal signalling, SUMOylation, cell cycle control, and
NGF-stimulated transcription indicate broader impacts on cellular homeostasis and immune regulation during
severe disease (Figure 10 Right). Together, these findings highlight key molecular mechanisms underlying
pathophysiological outomes of SARS-CoV-2 infection and provide insight into the differential host responses that
may drive disease progression and severity.
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PRE- and POST- SARS-COV-2 SEVERE vs MILD SARS-COV-2

Figure 10. Gene Set Enrichment Analysis (GSEA) of dysregulated biological processes and pathways following infection (LEFT: pre- vs. post-infection timepoints
during mild SARS-CoV-2 disease) and during the acute phase of the disease (RIGHT: severe vs. mild symptomatology).

Whole-genome enzymatic methyl-sequencing (WG-EM-seq) was performed on genomic DNA isolated from
PBMCs and dry pellet PBMCs. Library preparation for comprehensive methylome profiling was performed using
the NEBNext® Enzymatic Methyl-seq (EM-seq™) Kit, which preserves the integrity of methylated cytosines while
enabling accurate detection across the genome. In this workflow, 10-200 ng of input DNA undergoes enzymatic
conversion in which TET2 oxidizes 5-methylcytosine (5mC) to 5-carboxylcytosine (5caC) and the Oxidation
Enhancer converts 5-hydroxymethylcytosine (5hmC) to 5-glycosylhydroxymethylcytosine  (5ghmC).
Unmethylated cytosines are subsequently deaminated to uracil by APOBEC and sequenced as thymines, while
5mC and 5hmC remain as cytosines, ensuring faithful methylation calling. Libraries were sequenced on the
lllumina NovaSeq 6000 platform using 2 x 150 bp paired-end reads to achieve approximately 30x genome
coverage (~99 Gb per sample), providing high-resolution methylation maps suitable for downstream epigenomic
analyses.

Raw sequencing reads were first quality-checked and aligned to the reference genome using standard WGBS/EM-
seq workflows. Methylation calls at CpG sites were extracted and compiled into BSseq objects using the bsseq R
package, followed by filtering to remove low-coverage or low-quality sites, generating the *.bsseq.filter.rds
datasets for downstream analyses. Smoothed methylation estimates were calculated to improve signal-to-noise
ratios across the genome. Differential methylation analysis was then performed using the DSS package, which
applies a Bayesian hierarchical model with dispersion shrinkage to identify differentially methylated loci (DMLs)
and regions (DMRs). Filtered DSS objects (*.dss.filter.rds) were generated to store high-confidence results, which
were subsequently used for visualization and integration with downstream epigenomic analyses.

2.2.2.1 RESULTS WG-EM-sEQ

Gene Set Enrichment Analysis revealed significant epigenetic and metabolic pathway dysregulation following
SARS-CoV-2 infection. Notably, pathways involved in SUMOylation of DNA methylation proteins and NOTCH
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signalling were dysregulated, indicating alterations in epigenetic regulation and cell fate control. Concurrently,
metabolic processes including insulin secretion and lipid metabolism were markedly affected, reflecting systemic
metabolic disruptions. Additionally, signalling pathways related to immune activation, platelet function, and
extracellular matrix remodelling were enriched, consistent with inflammatory and tissue damage responses. In
contrast, pathways linked to neuronal function and synaptic signalling present a negative NES (Normalized
Enrichment Score), suggesting downregulation of potentially underlying neurological symptoms observed post-
infection (Figure 11 Left). Together, these results suggest SARS-CoV-2 infection drives widespread epigenetic and
metabolic reprogramming that impacts immune responses, cellular homeostasis, and neurobiology.

In comparing severe versus mild COVID-19 cases, key epigenetic and signalling pathways show notable
dysregulation. NOTCH signalling pathways (NOTCH1, NOTCH3, NOTCH4) and their transcriptional regulators,
including RUNX3, are enriched in severe cases, suggesting enhanced epigenetic control linked to altered cell
differentiation and immune modulation. Concurrent activation of RHO GTPase pathways and mitotic processes
indicates increased cytoskeletal remodelling and cell proliferation. In contrast, pathways related to B cell receptor
signalling and anti-inflammatory IL-10 synthesis showed a negative NES suggesting a downregulation of gene
expression, implying compromised adaptive immune responses in severe disease. Additionally, suppression of
neuronal signalling pathways such as NMDA receptor activation and beta-catenin-mediated transcription may
relate to neurological symptoms seen in severe COVID-19 (Figure 11 Left). Together, these results reflect a shift
toward heightened cellular signalling and epigenetic remodelling alongside impaired immune regulation,
potentially driving disease severity.

PRE- and POST- SARS-COV-2 SEVERE vs MILD SARS-COV-2

v e - ———

Figure 11. Gene Set Enrichment Analysis (GSEA) of EPIGENETICALLY dysregulated biological processes and pathways following infection (LEFT: pre- vs. post-
infection timepoints during mild SARS-CoV-2 disease) and during the acute phase of the disease (RIGHT: severe vs. mild symptomatology).

Our analyses show that integrating DNA methylation and transcriptomic data presents substantial computational
challenges, particularly in clinical cohorts with limited sample sizes. Standard differential methylation analyses
require considerable statistical power to correct for multiple testing across hundreds of thousands of CpG sites,
which can hinder the detection of subtle yet biologically meaningful signals. To overcome these limitations, as
detailed in Deliverable 6.1, we developed a targeted Regulatory Region Set Enrichment Analysis combined with
a robust Multi-Modal Data Integration Strategy, initially validated in HIV studies and subsequently applied to
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SARS-CoV-2 infection samples. By prioritizing functionally relevant regulatory regions and leveraging the
complementary nature of methylation and expression data, our framework enhanced the identification of
epigenetic alterations directly linked to transcriptional changes. This scalable and sensitive approach enables
more reliable biomarker discovery and provides mechanistic insights into host-pathogen interactions in clinical
research contexts for the identification od druggable therapeutic targets.

To ensure the robustness and clinical relevance of the findings, we will validate our results combining
independent cohort testing with different experimental approaches as mentioned above in the context of Long-
COVID (WP4), additional cohorts at geographically distinct sites (SAAR and OSR) and with animal models that
have been established in WP5.
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